Cannonical Triplets and Component Sets
Cannonical Triplets
A cannonical triplet Tuple{Function,Function,Real}
is a tuple consisting of an instantaneous amplitude (IA) Function
, an instantaneous frequency (IF) Function
, and a phase reference Real
.
\[\mathscr{C}\triangleq\left\{a(t),\omega(t), \phi\vphantom{0^0}\right\}\]
Defining a Cannonical Triplet
We can define a cannonical triplet as follows.
julia> a₀(t) = exp(-t^2)
a₀ (generic function with 1 method)
julia> ω₀(t) = 2.0
ω₀ (generic function with 1 method)
julia> φ₀ = 0.0
0.0
julia> 𝐶₀ = (a₀,ω₀,φ₀)
(a₀, ω₀, 0.0)
Component Sets
A component set Array{Tuple{Function,Function,Real},1}
is a set of cannonical triplet Tuple{Function,Function,Real}
.
\[\mathscr{S}\triangleq\left\{\mathscr{C}_0,\mathscr{C}_1,\cdots,\mathscr{C}_{K-1}\vphantom{0^0}\right\}\]
Defining a Component Set
We can define a component set as follows. First, we define several cannonical triplet.
a₀(t) = exp(-t^2)
ω₀(t) = 2.0
φ₀ = 0.0
𝐶₀ = (a₀,ω₀,φ₀)
a₁(t) = 1.0
ω₁(t) = 10*t
φ₁ = 0.1
𝐶₁ = (a₁,ω₁,φ₁)
a₂(t) = 0.8*cos(2t)
ω₂(t) = 10 + 7.5*sin(t)
φ₂ = π
𝐶₂ = (a₂,ω₂,φ₂)
Then, store the cannonical triplets in an array.
julia> 𝑆 = [𝐶₀,𝐶₁,𝐶₂]
3-element Array{Tuple{Function,Function,Real},1}:
(a₀, ω₀, 0.0)
(a₁, ω₁, 0.1)
(a₂, ω₂, π)